Solution-Processed Photovoltaics
By harvesting the radiant energy that from the sun reaches our planet, solar photovoltaics is key to tackling the rising global energy demand as well as climate change. Whilst well-established solar cell technologies have reached high efficiency levels, the complexity of their manufacturing process, their materials properties, and their cost have thus far prevented solar photovoltaics from becoming ubiquitous and thus delivering its full benefits. 

In recent years, lead-free perovskite-inspired materials have emerged as an attractive route to green, easy-to-fabricate photovoltaics that could potentially meet the demands for low-cost, ubiquitous solar energy harvesting. Whilst featuring attractive bulk properties similar to those of high-efficiency lead-halide counterparts, lead-free perovskite-inspired absorbers are not burdened with the toxicity of lead and, in many cases, possess much higher inherent stability. Moreover, in most instances, they can be deposited through low-temperature solution-based methods, which pave the way for low-cost photovoltaics. 

At the Pecunia Research Group, we seek to harness lead-free perovskites into efficient photovoltaic devices. This involves firstly material development and characterisation, through which we identify compositional, crystallographic, and microstructural solutions with high photovoltaic potential. Further, we engineer the deposition conditions and device architectures that maximize the resulting photovoltaic efficiency. Finally, we explore the capabilities of lead-free perovskite-inspired devices for photovoltaic applications that best allow them to express their full potential—in outdoor solar harvesting and beyond. This also involves demonstrating the capability of lead-free perovskite-inspired photovoltaic devices to address real-world applications, for instance, in regard to their use in self-powered electronics for the Internet of Things. 

a) Photovoltaic efficiency boost in solution-processed Rb3Sb2I9 devices through dedicated processing protocols that enhance the perovskite film microstructure (10.1039/C9TA13352F). b) Photovoltaic enhancement of caesium-antimony-halide system by tuning its crystallographic dimensionality via solution-based halide mixing (10.1016/j.apmt.2020.100637).

Representative publications

V. Pecunia†*, J. Zhao, C. Kim, B. R. Tuttle, J. Mei, F. Li, Y. Peng, T. Huq, R. L.Z. Hoye, N. D. Kelly, S. E. Dutton, K. Xia, J. MacManus-Driscoll, H. Sirringhaus, Assessing the Impact of Defects on Lead-Free Perovskite-Inspired Photovoltaics via Photo-Induced Current Transient Spectroscopy, Advanced Energy Materials, 2021. DOI: 10.1002/aenm.202003968

Y. Peng*, T. N. Huq*, J. Mei*, L. Portilla, R. A. Jagt, L. G. Occhipinti, J. L. MacManus-Driscoll, R. L. Z. Hoye†, V. Pecunia†, Lead-Free Perovskite-Inspired Absorbers for Indoor Photovoltaics, Advanced Energy Materials, 11, 2002761, 2021. DOI: 10.1002/aenm.202002761

V. Pecunia†*, L. G. Occhipinti†, A. Chakraborty, Y. Pan, Y. Peng, Lead-Free Halide Perovskite Photovoltaics: Challenges, Open Questions and Opportunities, APL Materials, 8(10), 100901, 2020. DOI: 10.1063/5.0022271

Y. Peng*, F. Li, Y. Wang, Y. Li, R. L.Z. Hoye, L. Feng, K. Xia, V. Pecunia†*, Enhanced photoconversion efficiency in cesium-antimony-halide perovskite derivatives by tuning crystallographic dimensionality, Applied Materials Today, 19, 100637, 2020. DOI: 10.1016/j.apmt.2020.100637

T. N. Huq*, L. C. Lee*, L. Eyre, W. Li, R. A. Jagt, C. Kim, S. Fearn, V. Pecunia, F. Deschler, J. L. MacManus-Driscoll, and R. L. Z. Hoye†, Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percent-Level Iodine-, Oxygen-, and Bismuth-Related Surface Defects, Advanced Functional Materials, 1909983, 2020. DOI: 10.1002/adfm.201909983

F. Li*, Y. Wang, K. Xia, R. L. Z. Hoye, V. Pecunia†*, Microstructural and Photoconversion Efficiency Enhancement of Compact Films of Lead-Free Perovskite Derivative Rb3Sb2I9, Journal of Materials Chemistry A, 8, 4396–4406, 2020. DOI: 10.1039/C9TA13352F


Vincenzo at Spring MRS 2021
Apr 19, 2021
Vincenzo presented at the 2021 Virtual MRS Spring Meeting.
Vincenzo at WNCST 2021
Mar 10, 2021
Vincenzo presented at the 2021 World Nano Congress on Advanced Science and Technology (WNCST 2021).
Vincenzo at InnoLAE 2021
Feb 24, 2021
Vincenzo presented at the 7th annual Innovations in Large-Area Electronics Conference (innoLAE 2021).
Vincenzo at FLEX 2021
Feb 23, 2021
Vincenzo presented at the 20th FLEX Conference & Exhibition.
Vincenzo joins the Editorial Board of Nanotechnology
Feb 19, 2021
Prof. Pecunia is pleased to accept the invitation to join the Editorial Board of the journal Nanotechnology.
  • © 2020 Pecunia Group of Thin-Film Optoelectronics
Menu Research Publications